Putting the Squeeze on Nanothreads to Spin Living Tissue
UNDER PRESSURE: By applying pressure around the outside of a special needle, scientists can spin a nanosize thread of living cells. |
Scientists using an electrically charged needle have electrospun nanosize threads of cells encased in plastic polymers to create living microfibers that promote tissue regrowth. Unfortunately, the electrical charge can hurt both the spun cells and the scientists doing the spinning. But now mechanical engineers Suwan Jayasinghe and Sumathy Arumuganathar of University College London have invented a way to spin nanothreads using only pressure and, with the help of medical colleagues, shown that they can create such nanothreads of living heart tissue, potentially revealing the way to weave an entirely new, healthy heart or even fresh, new skin.
"[We can] remove the electric field and use pressure to draw the fibers," Jayasinghe says. "You can make scaffolds with living cells with this technique as well, which shows that this technique can be used right across the board."
The researchers successfully used this method to spin tissue from smooth muscle cells from rabbit aortas with a special device comprising three concentric needles: an inner needle pushing out the cells, a second needle ejecting an encasing polymer, and a third, surrounding needle that applies pressure. By flowing the cells at a slow rate, the polymer at a slightly faster rate, and applying pressure (ranging from slightly less to nearly double that of the atmosphere), Jayasinghe and his colleagues teased out a microthin, continuous thread. "Some of the simplest things in life are some of the things that are unexplored," Jayasinghe says. "Increase the pressure and you get thinner fibers."
Cells that were subjected to such pressures showed no immediate ill effects nor any three weeks later compared with untreated controls, according to a paper outlining the findings online in Biomedical Materials. The technique may allow researchers to create living scaffolds of cells to deliver drugs as well as grow or regenerate the heart and other organs.
Image: COURTESY OF SUWAN JAYASINGHE | |
LIVING SCAFFOLD: Scaffolds of living nanofibers, pictured here, could allow the regeneration or regrowth of tissue, ranging from skin to entire organs such as the heart. |
Regardless, the novel technique will allow engineers to play with new types of materials, such as metal nanoparticles that would have disrupted an electrical charge. "You can directly thread very highly conducting composite materials to polymers that were previously unexplored," Jayasinghe says.
The team is now testing the gene production of the resultant cellular nanothreads to determine their safety. "You wouldn't want to put cancerous cells back into anybody's body," Jayasinghe notes. He adds that researchers are also exploring the potential of spinning such nanothreads from stem cells. "Stem cells will differentiate into anything," he says. "They can go on your heart or on your skin, they can go anywhere."
10 | 2024/11 | 12 |
S | M | T | W | T | F | S |
---|---|---|---|---|---|---|
1 | 2 | |||||
3 | 4 | 5 | 6 | 7 | 8 | 9 |
10 | 11 | 12 | 13 | 14 | 15 | 16 |
17 | 18 | 19 | 20 | 21 | 22 | 23 |
24 | 25 | 26 | 27 | 28 | 29 | 30 |
◆Chat
◆Micro TV